Поиск в словарях
Искать во всех

Физический энциклопедический словарь - слабое взаимодействие

 

Слабое взаимодействие

слабое взаимодействие
одно из четырёх известных фундам, вз-ствий

692



между элем. ч-цами. С. в. гораздо слабее не только сильного, но и эл.-магн. вз-ствия, но гораздо сильнее гравитационного.

О силе вз-ствия можно судить по скорости процессов, к-рые оно вызывает. Обычно сравнивают между собой скорости процессов при энергиях ~1 ГэВ, к-рые характерны для физики элем. ч-ц. При таких энергиях процесс, обусловленный сильным вз-ствием, происходит за время ~10-24 с, эл.-магн. процесс за время ~10-21 с, характерное же время процессов, происходящих за счёт С. в. («слабых процессов»), гораздо больше: ~10-10 с, так что в мире элем. ч-ц слабые процессы протекают чрезвычайно медленно.

Другая хар-ка вз-ствия — длина свободного пробега ч-цы в в-ве. Сильно взаимодействующие ч-цы (адроны) можно задержать железной плитой толщиной в неск. десятков см, тогда как нейтрино, обладающее лишь С. в., проходило бы, не испытав ни одного столкновения, через железную плиту толщиной порядка миллиарда км. Ещё более слабым явл. гравитац. вз-ствие, сила к-рого при энергии ~1 ГэВ в 1033 раз меньше, чем у С. в. Однако в повседневной жизни роль гравитац. вз-ствия гораздо заметнее роли С. в. Это связано с тем, что гравитац. вз-ствие, как и электромагнитное, имеет бесконечно большой радиус действия; поэтому, напр., на тела, находящиеся на поверхности Земли, действует гравитац. притяжение со стороны всех атомов, из к-рых состоит Земля. Слабое же вз-ствие обладает настолько малым радиусом действия, что он до сих пор не измерен. Его ожидаемая величина ок. 2•10-16 см (что на три порядка меньше радиуса сильного вз-ствия). Вследствие этого, напр., С. в. между ядрами двух соседних атомов, находящихся на расстоянии 10-8 см, ничтожно мало.

Однако, несмотря на малую величину и короткодействие, С. в. играет очень важную роль в природе. Так, если бы удалось «выключить» С. в., то погасло бы Солнце, т. к. был бы невозможен процесс превращения протона в нейтрон, позитрон и нейтрино, в результате к-рого четыре протона превращаются в 4Не. Этот процесс служит источником энергии Солнца и большинства звёзд. Процессы С. в. с испусканием нейтрино вообще играют исключительно важную роль в эволюции звёзд, обусловливая потери энергии очень горячими звёздами, во взрывах сверхновых звёзд с образованием пульсаров и т. д. Если бы не было С. в., были бы стабильны и широко распространены в обычном в-ве мюоны, -мезоны, странные и «очарованные» ч-цы, к-рые распадаются под действием С. в. Столь большая роль С. в. связана с тем, что оно не подчиняется ряду запретов, характерных для сильного и эл.-магн.

вз-ствий. В частности, С. в. превращает заряж. лептоны в нейтрино, а кварки одного типа («аромата») в кварки др. типов.

Интенсивность слабых процессов быстро растёт с ростом энергии. Так, напр., бета-распад нейтрона, энерговыделение в к-ром мало (~1 МэВ), длится ок. 103 с, что в 1013 раз больше, чем время жизни -гиперона, энерговыделение при распаде к-рого составляет ~100 МэВ. Сечение вз-ствия с нуклонами для нейтрино с энергией ~100 ГэВ прибл. в миллион раз больше, чем для нейтрино с энергией ~1 МэВ. По теор. представлениям, рост сечения продлится до энергий порядка неск. сотен ГэВ в системе центра инерции сталкивающихся ч-ц. При этих энергиях и при больших передачах импульсов должны проявиться эффекты, связанные с существованием промежуточных векторных бозонов W±, Z°. На расстояниях между сталкивающимися ч-цами, много меньших 2•10-16 см (комптоновской длины волны промежуточных бозонов), С. в. и эл.-магн. вз-ствие имеют практически одинаковую интенсивность (см. ниже).

Наиболее распространённый процесс, обусловленный С. в.,— -распад радиоактивных ат. ядер. В 1934 итал. физик Э. Ферми построил теорию -распада, к-рая с нек-рыми существ. модификациями легла в основу последующей теории т. н. универсального локального четырёхфермионного С. в. Согласно теории Ферми, эл-н и нейтрино (точнее, антинейтрино), вылетающие из -радиоактивного ядра, не находились в нём до этого, а возникают в момент распада. Это явление аналогично испусканию фотонов низкой энергии (видимого света) возбуждёнными атомами или фотонов высокой энергии (-квантов) возбуждёнными ядрами. Причиной этих процессов явл. вз-ствие электрич. зарядов ч-ц с эл.-магн. полем: движущаяся заряж. ч-ца — эл-н, протон — создаёт эл.-магн. ток, к-рый возмущает эл.-магн. поле; в результате этого вз-ствия ч-ца передаёт энергию квантам этого поля — фотонам. Вз-ствие фотонов с эл.-магн. током описывается выражением ejэ.м.А. Здесь е — элем. электрич. заряд, являющийся константой эл.-магн. вз-ствия (см. Константа связи), А -оператор фотонного поля (т. е. оператор рождения и уничтожения фотона)» jэ.м. — оператор плотности эл.-магн. тока. (Часто в выражение для эл.-магн. тока включают также множитель е.) В jэ.м. дают вклад все заряж. ч-цы. Так, напр., слагаемое, отвечающее эл-ну, имеет вид: ~, где  — оператор уничтожения эл-на или рождения позитрона, a ~ оператор рождения эл-на или уничтожения позитрона. [Выше для упрощения не показано, что jэ.м. так же, как А, явл. четырёхмерными векторами. Более точно, вместо  следует писать совокупность четырёх выражений

~, где  —матрицы Дирака (см. Дирака уравнение), =0, 1, 2, 3. Каждое из этих выражений умножается на соответствующую компоненту четырёхмерного вектора A.]

Вз-ствие e~A описывает не только испускание и поглощение фотонов эл-нами и позитронами, но и такие процессы, как рождение фотонами электрон-позитронных пар или аннигиляция этих пар в фотоны. Обмен фотоном между двумя заряж. ч-цами приводит к вз-ствию этих ч-ц друг с другом. В результате возникает, напр., рассеяние эл-на протоном, к-рое схематически изображается Фейнмана диаграммой, представленной на рис. 1. При переходе протона в ядре с одного уровня на другой это же вз-ствие может привести к рождению электронпозитронной пары (рис. 2).

Теория -распада Ферми по существу аналогична теории эл.-магн. процессов. Ферми положил в основу теории вз-ствие двух «слабых токов», но взаимодействующих между собой не на расстоянии путём обмена ч-цей— квантом поля (фотоном в случае эл.-магн. вз-ствия), а контактно. Это вз-ствие между четырьмя фермионными полями (или фермионами p, n, е и нейтрино ) в совр. обозначениях

имеет вид: (GF/2p~ne~v. Здесь GF — константа Ферми, или константа слабого четырёхфермионного вз-ствия, эксперим. значение к-рой GF10-49 эрг•см3 (величина GF/ћc имеет размерность квадрата длины, и в единицах ћ=c=l GF10-5/M2, где

М — масса протона),

Рейтинг статьи:
Комментарии:

Вопрос-ответ:

Ссылка для сайта или блога:
Ссылка для форума (bb-код):